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Abstract. The breakdown of random networks on triangular lattices is studied numerically. 
For the interactions the Born Hamiltonian is used, which gives the problem a tensorial 
character in contrast with the scalar-type random resistor and central force networks. Also, 
networks built out of fibres of constant length are studied. This gives rise to short-range 
oriented correlations and a wider binomial distribution for the local elastic moduli. The 
results show novel effects between the competition of the weakening caused by increased 
fluctuations in bond strengths and the reinforcement by fibres. These phenomena are studied 
by averaged breakdown forces, averages over broken bonds during the fracture processes 
and stress-strain curves. A generic stress-strain curve is presented, which also shows how 
the tensorial nature of the local interactions reduces the gap between the fracture of random 
networks and real materials. 

1. Introduction 

Random networks have recently attracted enormous interest as model systems for 
studying the transport and mechanical properties of disordered solids. The elastic 
behaviour of random networks consisting of springs is at present well understood in 
terms of scaling behaviour, even though there exists several universality classes of the 
elasticity properties. 

The breakdown mechanisms of random networks are known only in some simplified 
cases as fracture, being a dynamical process, is inherently more difficult to study and 
simulate than elasticity. The breakdown of nearly-complete fuse networks is brittle [ l] .  
Beale and Srolowitz [2] have shown that this brittle breakdown at a low concentration 
of non-interacting defects carries over to the central force (CF) model. The fracture of 
very diluted networks near the percolation point is also brittle [3: 41. 

There still remains several variables that affect the fracture mechanisms and which 
have not been studied systematically. Firstly, the fluctuations in the individual bond 
strength or in the microscopic breakdown threshold affect breakdown [5] .  Secondly, the 
way that the breakdown criterion is imposed can change the fracture behaviour (cf [6]). 
Thirdly, the microscopic physical model and its symmetry have strong effects on fracture 
mechanisms. 

The few simulation studies of the breakdown mechanics have been as follows: the 
scalar case either on the fuse networks [7-91 or on the dielectric breakdown of composite 
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materials[lO], themmodel [2,5,11], andonlyveryrecentlytheBornmodelonasquare 
lattice [12] and the beam model [13]. The results together indicate that an appropriate 
Hamiltonian with bond-bending terms is called for in order to understand the stress- 
strain curves of real disordered structures. 

The complicated processes arising in the fracture of a network in the intermediate- 
density region between the percolation threshold and the limit of weak disorder are 
poorly known. In this case the defects interact during the breakdown process, which 
complicates the relative importance of the mechanisms involved, such as shielding and 
non-local breakdown [7]. However, for many practical purposes this is the region of 
major importance. 

The simulations and theories worked out so far have assumed that the properties of 
the bonds in the network are not correlated. However, in composites or in the fibrous 
network constituting paper, the short-range correlations are very strong. As these 
correlations are also highly oriented, they are expected to have a major influence on the 
fracture mechanisms and on the stress-strain curves. One should also note that these 
materials are true networks and therefore offer an experimental system for verifying the 
results from the simulations. 

In this paper, we report on afirst simulation of fracture in random triangular networks 
with non-central forces. Different densities, ones that are neither close to the percolation 
threshold nor ordered, are used. We study the effects of short-range correlations which 
change the local defect geometry. The short-range correlations used here are those that 
simulate the structure of fibrous materials. 

The outline is as follows. In section 2 we introduce the models used, both the ordinary 
Born model, and our version with short-range correlations. We also describe briefly how 
the correlations affect the elastic properties. In section 3 we first introduce the simulation 
methods of fracture. We then study the elastic and plastic behaviour of the networks 
simulated as a function of damage, the force and the amount of damage needed to 
fracture and represent averaged stress-strain curves for the simulated cases. In section 
4 we conclude with a generic stress-strain curve and summarise the main results. 

2. The models 

2.1. Model 

We simulate the fracture of a triangular network, which is the simplest able to carry 
forces of a tensorial character. For the microscopic description of the medium we use 
the Born Hamiltonian [14]: 

= B E &,,,[(U, - U,) * k,l12 + B E Pl.,[(U, - U,> x kll12 (1) 
1 3 1  1.1 

where U ,  is the displacement of a lattice node, kll is a unit vector parallel to the bond 
between the adjacent nodes i and j ,  and and P,.,. are weight factors or the elastic 
moduli of the bond and the bending stiffness, respectively. 

The Born model lacks the rotational invariance [15]. This leads, as the behaviour of 
the elasticity exponent shows when compared with the rotationally invariant bond- 
bending model (see, e.g., [16, 171) (tBorn = 4 and t b b  -- 3.7), to a stiffer response of the 
network in the vicinity of the percolation threshold. However, the lack of rotational 
invariance has less dramatic consequences outside the critical region. 

The scalar-type random resistor network (RRN) and the CF model may be recovered 
from the Hamiltonian by setting a = /3, and /3 = 0, respectively. Feng and Sen [18] were 



Fracture of random fibre networks 6095 

external  1 i n t e r n a l  
I nodes I nodes 
I 

0 

random 1 r andom 
position direct ion 

( U )  

I 
I 

x X I .  0 0 

x x  X c f i  

F i b r e  
( b )  L = 3  

Figure 1. The construction of the network out of fibrous elements. (a )  The end point and the 
direction are chosen randomly. In addition to the node in the network under consideration 
we must include external nodes as possiblestarting points of the fibre to ensure homogeneous 
density throughout theregionofinternalnodes. (b)  Afibreoflength 3placedonthe network. 

the first to study the elastic crossover as a function of /3; if one increases /3 from zero, the 
elastic modulus of the network becomes non-zero throughout the region between the 
rigidity [19] and geometrical thresholds, and satisfies a RRN-type scaling of elasticity near 
the latter. 

To study the effect of interacting defects, i.e. the density region between the critical 
region and the almost complete network, we construct the network by setting fibrous 
elements of a given length on the lattice so that both the initial point and the direction 
are uniformly random (figure 1). When more than one of the objects occupy the 
same bond of the triangular lattice, the elastic constants associated with that bond are 
multiplied by the number of the elements. This amounts to considering the elements 
carrying the load in parallel. In contrast with our procedure, we call the case where the 
network consists of only singly occupied and unoccupied bonds the ordinary Born model. 

We naturally take care of the statistical uniformity of the network by using free 
boundary conditions in the build-up. Thus, close to the edges, the points outside the 
final network have to be considered as possible starting points of the fibrous objects. 
The resulting distribution of the local elastic properties is binomial. The bond-to-bond 
correlation function of the elastic properties is non-vanishing over distances of the length 
of the fibrous elements, but only if both the end points of both the bonds lie on the same 
line. 

There are two natural ways of study networks consisting of fibres of different lengths. 
In particular, when comparing the results with the ordinary Born model, one should 
study networks with the same amount p of missing bonds: 

(2) p = 1 - (1 - p c o v e r ) ’ ~ l ~ b ~ c s  

wherep,,,,, is the probability that a randomly placed fibre covers a bond in the network, 
and nfibres is the number of fibres. The method that we have used definespc,,,, as 

Pcover = L / 3 [ N  + 2(L - 111’- ( 3 )  
N is the linear size of the network and L the length of a single fibre. Using the formula 
for pcover gives for nfib,,, : 

nfibres = - p)/ln(l - Pcover). (4) 

Kave = (YnfibresPcover. ( 5 )  

Another possibility is to consider the average modulus: 
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Average occupation number Average occupation number 

Figure 2. The elastic modulus of a 20 x 20 fibrous network as a function of the average 
occupation number of a bond in the lattice for (a) a fibre length L of 2 and (b)  a fibre length 
L of4: 0, /3fa = 0.1; X, /3/a = 0.4. 

In the limit of large networks, K,.,, andp are monotonically related to each other: 

lim p + 1 - exp( -Kave /a ) .  ( 6 )  
N-+- 

Owing to finite size effects the actual effective length of a fibrous element is smaller than 
its nominal value and can be given as a function of network size and nominal length. 
Starting from the effective length of a fibre of length L on a strip of bonds of length N ,  
one arrives at the formula 

L-1  

L,ff = ( ( N  - L)L + 2 2i ) /N + L - 2. (7) 
i =  1 

If geometrical factors are taken into account (i.e. the shape of the network) together 
with equation (7), a rather complicated expression results The effective lengths used in 
this study are 1.00,1.87 and 3.30 for L = 1, L = 2 and L = 4, respectively, which shows 
that for practical purposes L N .  

2.2. Elasticity 
Although the addition of longitudinal short-range correlations changes the percolation 
threshold, one can by simple scaling arguments show that in the critical region the scaling 
of the elastic modulus is the same as that of the ordinary Born model. This can also be 
seen from our numerical simulations. Figure 2 shows that outside the critical region the 
elastic modulus is a rather linear function of the average elastic modulus. The critical 
region judged by this parameter gets smaller as the length of the fibrous elements 
increases. However, figure 3 shows that, when we study the elastic modulus as a function 
of the probability that a given bond is missing instead of the average elastic modulus, we 
find a behaviour similar to the ordinary Born model. As the two quantities are linearly 
related close to the percolation threshold, we conclude that critical exponents in terms 
of these two quantities are the same. 

We do not try to give acomplete account of the effects that the correlations have on the 
backbone. However, these can be discussed to some extent with the help of arguments 
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Figure 3. The (a) L = 2 data and ( b )  L = 4 data of figure 2 as a function of the probability p 
that a bond is occupied by at least one fibre. 

concerning the Coordination number of a node in the network and the geometry of 
longitudinal holes, i.e. the cluster statistics of missing bonds. With a constant bond 
elastic modulus, i.e. the ordinary Born model, the coordination number is binomially 
distributed with a mean of 6p.  In the case of a network of fibrous elements we construct 
the probabilities of different coordination numbers from the probabilities describing the 
contributions from each of the axes. 

Denoting the probability that the coordination number c,,,, along an axis is zero by 
Po one by P I  and two by P2, we have for the 6-values 

Po = P(n = 0 ) 2  
P ,  = 2P(n = O)P(n > 0 )  
P* = 1 - Po - PI 

(8) 
(9) 

(10) 
where P(n  = m) is the conditional probability for the elastic modulus n of a bond to be 
m if the neighbouring two bonds are not covered simultaneously by one or more fibres. 
Expressing this probability by 1 - p c o n d ,  P(n = 0) is 

and 
(1 - P c o v e r / [ l  - (L 1 I ~ c o v e r I ) ~ f l b r e s  (11) 

(1 - [(L - l) /LIPcover)nf 'b 'es (12) 
denotes 1 - pcond;pcover has been introduced in equation ( 3 ) .  P(n  > 0 )  can be, of course, 
expressed as 1 - P ( n  = 0) .  

By using the P,-values, we arrive at figure 4,  where the probabilities for different 
coordination numbers c are given as functions of p and L.  Comparing the different 
distributions, the effects of fibrousness can be seen most clearly in the diluted cases (i.e. 
p = 0.7 and p = 0.5). When p is close to unity, increasing the fibre length gradually 
reduces the proportion of nodes with c = 5 and increases that with c = 4. Whenp = 0.7 
the trend continues, with longer fibres favouring even coordination numbers. Finally, 
when p = 0.5, a comparison between, for example, the L = 4 and L = 1 distributions 
shows how the value of P3 becomes smaller as the length increases which causes a larger 
amount of lattice nodes to have either c = 6 or c = 0 while the probabilities P ,  , Pz  , P4 
and P ,  do not change very much. 

The effects of fibrousness on the backbone are thus due to a strengthening effect 
caused by a reduction in 'dangling ends', i.e. there are fewer bonds that do not contribute 
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Figure 4. The probability distribution of the coor- 
dination number of a node on the lattice for L = 
1 ,2and4 : (a )p=0 .9 ; (b )p=0 .7 ; ( c )p=0 .5 .  

to the elastic modulus and so do not belong to the backbone of the network. Bonds 
adjacent to a node with an odd coordination number have also on average a smaller 
elastic modulus. This will lead to enhanced interaction between fibres parallel to the 
external strain and also larger parallel defects. 

Fibrousness also affects the distribution of the bond forces when the network is 
elongated. The critical types of defect in the high-density regime have been studied in 
the context of fuse networks [20-241 and the CF model [2], and their differences imply 
new effects in this case, too, Additional effects arise from the combination of longitudinal 
correlations and the tensorial character of mechanical forces, which emphasises the non- 
local fracture behaviour compared with other scalar or tensorial models. 

3. Numerical results 

3.1. Simulation method 

To simulate fracture, we use the semi-dynamical method (see, e.g., [SI). First, a random 
network with the chosen fibre length and probability 1 - p for a bond to be missing from 
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the network is generated. Then the network is strained by a constant amount and the 
corresponding force is calculated. All the individual bonds in the lattice are considered 
for breakdown by the selected criterion, and the most affected is broken. To generate 
the stress-strain curve of the network, the stress and strain are rescaled so that the 
broken bond is, in our case, strained to the critical length. This process is repeated until 
the network breaks down and becomes disconnected. 

We studied three probabilities: p = 0.9, p = 0.7 and p = 0.5. The fibre lengths 
considered were L = 1, L = 2 and L = 4, and the results were compared also with the 
ordinary Born model. The calculations were performed on a VAX 11/750 with afloating 
point accelerator. Typical CPU time needed to complete a run of ten samples of each of 
the probabilities, two @-values and one fibre length was of the order of 15 h for 20 X 20 
networks. The connectivity matrix in the force equation of the network was inverted by 
a standard library subroutine for sparse band matrix inversion. 

The dynamics of the fraction depend on the fracture criterion. One might consider 
the energy stored in the bond, the force acting upon it, the strain or the corresponding 
moment, or a combination of these. The selection is by nature somewhat arbitrary, and 
that used here was the computationally simplest although somewhat unphysical. We use 
the criterion for the strain of an individual bond. When the @-to-a ratio is close to unity, 
this should lead to similar results as with a force or energy criterion. To study the effect 
of this choice combined with the rotationally non-invariant Hamiltonian, we use two 
values for the @-to-a ratio: 0.1 and 0.4. 

We average the network responses in a way which is mathematically equivalent to 
considering the responses of the individual networks by straining them in parallel. Given 
foranetworkithecorresponding bond-breakingstrengths F(i, j )  andelongationsE(i, j ) ,  
the combined effect of n parallel networks results in a stress-strain curve defined by the 
elastic modulus Y as 

Y(6)  = ( W ,  O/E(k, 1)) (13) 
where the average is performed over all the networks, 6 is an ‘averaged elongation’ and 
the F(k, 1) and E(k, 1) are taken such that 1 corresponds to the smallest E larger than 6. 
This idea is clearly consistent with the idea of stretching a sample continuously and 
monitoring the force needed. In the literature there exists already another averaging 
method [ll]; however, that presented here seems to us to be more physical. 

3.2. Breakdown statistics 

To illustrate how the breakdown process depends on the parametersp, L and PIE, we 
first discuss the effect of partial fracture on the static, or elastic, response of a network. 
Then we compare the following properties of the fracture processes: 

(i) the maximum force that the lattice can support; 
(ii) the number of bonds broken in the fracture; 
(iii) ‘clustering’ of bonds in fracture (that is, as the elongation of the network is 

(iv) the average modulus of broken bonds during the fracture. 
increased monotonically, bonds may break at the same value); 

3.2.1. Static behauiour. In figure 5 we show some typical examples of the elastic moduli 
as functions of the number of broken bonds. These curves appear rather similar in 
contrast with the great differences in stress-strain curves in section 3.3. The only trend 
seems to be the slower reduction in network modulus at the beginning of the fracture in 
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Number of broken bonds Number of broken bonds 
Figure 5. The average elastic modulus of a network as a function of bond broken during the 
fracture forp = 0.9 (- . - ) , p  = 0.7 (---) andp = 0.5 (-): ( a )  ordinary Born model; ( b )  
L = 4. 

the case of fibrous networks. One should remember that in many cases the maximum 
force is reached rather early in terms of bonds broken during the fracture. 

An approximate explanation for the behaviour of the elastic modulus can be given 
by different phases in the elastic response of a network. At the beginning of the fracture, 
bonds with a small individual elastic modulus are most susceptible to breakdown. 
However, their contribution to the elastic modulus of the network is not so large owing 
to their small modulus. As the fracture continues, bonds with a larger elastic modulus 
start to break. This also influences the modulus of the whole network indirectly because 
clumps of bonds may be disconnected from carrying the load and thus do not contribute 
to the elastic modulus. In some cases the behaviour of the average modulus is almost 
linear down to the final fracture. This results from the network’s becoming essentially a 
system of non-interacting strings connected in parallel. When one of these strings breaks, 
the elastic modulus of the remaining network is decreased in a linear fashion. 

3.2.2. The breakdownforces. There are two basic approaches to the process of fracture. 
One can control the process either by force or by elongation. We have chosen the latter, 
because it includes also information on force-controlled breakdown. In addition, we 
gain insight about the final phase of the fracture. We have calculated the maximum 
forces during the breakdown processes together with the forces needed to break the first 
bond and the last bond (see table 1). As the average modulus of a bond changes as a 
function of p ,  we have presented these data also normalised by the expectation value of 
the modulus at a bond (equation ( 5 ) )  (table 2). 

Increasing the /3-to-a ratio has a strong influence on the magnitude of the forces. 
With a small ratio, local movements perpendicular to the original direction of the bond 
are favoured energetically. This kind of shear leads to the breakdown of such bonds, as 
they are readily stretched beyond the criterion used. A partial reason is also the extra 
energy needed to deform the network when /3 is larger, proportional to the change Sp 
in /3. 

The difference between fibrous and non-fibrous networks is most pronounced when 
p is small. At  p = 0.5 the average forces needed for fracture differ from each other 
considerably, if the fibre length is increased from L = 1 to L = 2. These cases differ also 
considerably from the ordinary Born model (note, however, that K,,, for the ordinary 
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Table 1. Unnormalised breakdown forces for the ordinary Born model and different fibre 
lengths. In the second column are the forces needed to break the first bond, in the third the 
forces to break the last bond to disconnect the network and in the fourth the maximum force, 

K = l , p = O . l  
0.9 0.733 0.061 0.959 
0.7 0.292 0.016 0.403 
0.5 0.067 0.016 0.084 

K =  l,/3 = 0.4 
0.9 1.436 0.108 1.628 
0.7 0.692 0.069 0.834 
0.5 0.227 0.053 0.251 

L = 1, p = 0.1 
0.9 1.006 0.063 1.210 
0.7 0.299 0.041 0.368 
0.5 0.052 0.016 0.057 

L = l , p = 0 . 4  
0.9 1.854 0.207 1.928 
0.7 0.623 0.089 0.707 
0.5 0.196 0.055 0.196 

L = 2 , / 3 = 0 . 1  
0.9 1.121 0.136 1.427 
0.7 0.379 0.025 0.483 
0.5 0.122 0.028 0.128 

L = 2, /3 = 0.4 
0.9 2.086 0.350 2.269 
0.7 0.977 0.092 1.024 
0.5 0.307 0.065 0.315 

L = 4 , p  = 0.1 
0.9 1.492 0.132 1.937 
0.7 0.679 0.062 0.796 
0.5 0.268 0.034 0.294 

L = 4, /3 = 0.4 
0.9 2.253 0.190 2.697 
0.7 1.284 0.167 1.388 
0.5 0.480 0.088 0.543 

Born model is different from that of fibrous networks at givenp). The strength decreases 
considerably when a wider binomial distribution is introduced. The difference between 
the force to break the first bond, and the breakdown force, gets smaller, too. This can 
be attributed to the so-called ‘path formation’ [5], in which the breakdown process 
proceeds locally by seeking the weakest bonds and thus tries to avoid the stronger 
backbone of a network. 

Normalisation of the results reveals the tendencies discussed above even more 
strikingly. A wider bond moduli distribution ( L  = 1) results in an increasing weakness 
with lower values o fp .  

Fibres of length larger than unity have two effects. At high densities, the binomial 
distribution dominates, and the normalised maximum forces are smaller than in the 
ordinary Born model. At  lower densities, a strengthening effect appears. This is because 
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Table 2. Forces in table 1 normalised by the expectation value of the bond elastic modulus. 

P 

0.9 
0.7 
0.5 

0.9 
0.7 
0.5 

0.9 
0.7 
0.5 

0.9 
0.7 
0.5 

0.9 
0.7 
0.5 

0.9 
0.7 
0.5 

0.9 
0.7 
0.5 

0.9 
0.7 
0.5 

K = 1, p = 0.1 
0.733 0.061 
0.292 0.016 
0.067 0.016 

K = 1, /3 = 0.4 
1.436 0.108 
0.692 0.069 
0.227 0.053 

. L = 1 , p = 0 . 1  
0.393 0.024 
0.174 0.023 
0.024 0.011 

L = l , p = 0 . 4  
0.725 0.081 
0.362 0.052 
0.141 0.040 

L = 2, p = 0.1 
0.438 0.053 
0.220 0.014 
0.088 0.020 65 

L = 2, p = 0.4 
0.816 0.137 
0.568 0.054 
0.221 0.047 

L = 4 , / 3 = 0 . l  
0.584 0.051 
0.395 0.036 
0.194 0.025 

L = 4 , / 3 = 0 . 4  
0.882 0.074 
0.747 0.097 
0.347 0.063 

0.959 
0.403 
0.084 

1.628 
0.834 
0.251 

0.473 
0.214 
0.041 

0.754 
0.411 
0.141. 

0.558 
0.281 
0.092 

0.888 
0.596 
0.227 

0.758 
0.463 
0.212 

1.055 
0.807 
0.392 

in very dilute networks the effect of local correlations on the structure of the backbone 
overcomes weaknesses induced by fluctuations in bond elastic moduli. 

Earlier results in fracture are in some contrast with those presented above. In the CF 
model it has been concluded by Sahimi and Goddard [5]  that, when the disorder is 
introduced in the mechanical properties of the bonds, the fracture is brittle (fi = f m ) ,  
which seems to hold in our case at L = 1. Also, Hassold and Srolovitz [ 121 have proposed 
on the basis of simulations with the ordinary Born model on a square lattice that in 
practice this relation is at least an excellent approximation. The applicability of the 
former idea in our case is dubious, as the addition of a bond-bending part to the 
Hamiltonian network most probably affects the fracture mechanism. The latter idea 
invokes doubts about the right underlying geometry of the network for study of fracture. 
It is well known that the elastic threshold of a square lattice, with CF spings, in terms of 
p is unity and the crossover is dominant in a large region of 
3.2.3. Damage needed tofracture. A wide distribution of the bond elastic moduli leads to 
easy path formation and thus reduces the number of broken bonds needed to disconnect a 

[ 181. 
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Table 3. Numbers of bonds broken on average during the fracture and the ‘cluster sizes’, i .e. 
numbers of bonds broken for each increase in strain. 

P Average amount Cluster size 

0.9 
0.7 
0.5 

0.9 
0.7 
0.5 

0.9 
0.7 
0.5 

0.9 
0.7 
0.5 

0.9 
0.7 
0.5 

0.9 
0.7 
0.5 

0.9 
0.7 
0.5 

0.9 
0.7 
0.5 

K = l , p  = 0 . 1  
99.4 6.58 
77.6 3.59 
19.0 2.53 

K = l , p = 0 . 4  
96.8 11.66 
63.5 4.54 
14.0 2.55 

L = 1, p = 0.1 
42.4 6.00 
21.5 6.10 
7.8 3.40 

L = l , p = O . 4  
37.6 3.50 
19.9 3.90 
7.3 2.90 

L = 2 , p  = 0.1 
47.5 7.54 
40.3 3.30 
14.6 2.60 

L = 2, /3 = 0.4 
50.1 7.05 
26.5 6.02 
12.3 3.42 

L = 4, p = 0.1 
54.2 5.89 
40.8 4.98 
22.5 2.92 

L = 4 , / 3 = 0 . 4  
69.7 5.49 
46.1 5.42 
23.1 3.30 

network. The fibrous structure on the other hand reinforces the network locally because 
the curve of rupture has to be longer to find a weak path. This is more pronounced at 
low densities. Then in the network with L = 4 the number of bonds broken exceeds that 
of the ordinary Born model (table 3). 

The degree of brittleness, i.e. whether the fracture occurs in few sequences or more 
continuously, is another classifying property of the breakdown processes. We find that 
in the breakdown of networks of fibrous structure the process happens in smaller steps 
close t o p  = 1.0. The average number of steps in fracture indicates that the non-fibrous 
network fractures in a less brittle fashion. As the local network geometry becomes more 
random, the differences get smaller in terms of the size of clusters in the process. There 
seems to be a qualitative deviation in the fracture mechanisms between the cases L = 2 
and L = 4 at low densities. This shows how the degree of reinforcement affects the 
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Table 4. Average occupation numbers of bonds broken during the fracture 

P Occupation number 

L = 1,p= 0.1 
0.9 2.03 
0.7 I .41 
0.5 1.14 

L = 1, p = 0.4 
0.9 1.70 
0.7 1.18 
0.5 1.04 

L = 2, p = 0.1 
0.9 2.03 
0.7 1.46 
0.5 1.27 

L = 2 , p = 0 . 4  
0.9 1.84 
0.7 1.30 
0.5 1.10 

L = 4,p  = 0.1 
0.9 2.19 
0.7 1.53 
0.5 1.24 

L = 4 , p = 0 . 4  
0.9 2.09 
0.7 1.49 
0.5 1.19 

brittleness, as the former fracture in a brittle fashion in contrast with the latter. These 
results are based on rather restricted information and are therefore tentative. Quali- 
tatively similar results in terms of p-to-a ratio dependence have been achieved by 
Hassold and Srolovitz [12], except in the L = 4 case, where taking the limit /3+ a does 
not seem to lead to a reduction in the number of bonds broken. 

From the statistics of the occupation numbers of broken bonds we find the following 
features (table 4). Firstly, the p-to-a ratio clearly affects the average modulus. This is 
because, when a bond is stretched in a direction perpendicular to its original, the 
bond’s modulus matters less. Comparing the results with the average elastic moduli 
corresponding to the densities (2.56,1.72 and 1.38 forp = 0.9,0.7 and 0.5), we see that 
the average number of the broken bonds increases as a function of fibre length and 
becomes finally close to the value of the ordinary Born model (i.e. unity). Also, the 
difference between the two B-cases diminishes. Therefore, we conclude that at lower 
densities the bond strength fluctations are of less importance than the intrinsic reinforcing 
due to fibres. 

3.3. Stress-strain curves 

From the experimental point of view the most interesting aspect in our numerical 
calculations are the stress-strain curves, which are the only kind of simulation data that 
can be readily compared with the behaviour of real materials. In figures 611 we display 
the calculated stress-strain curves averaged as explained in section 3.1. 
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Figure 6. Averaged stress-strain curves (for the 
averaging method see text) at Pia = 0.1 andp = 
0.9. The curves show the behaviour for the ordi- 
nary Born model (-) and L = 1. (H.), L = 
2 (-) and L = 4 (&). 
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0.3 I 

Elongation 

Figure 8. Averaged stress-strain curves at Pia = 
0.1 andp = 0.5. The symbols are as in figure 6 .  

Force 
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Figure 7. Averaged stress-strain curves at Pia = 
0.1 andp = 0.7. The symbols are as in figure 6. 
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Figure 9. Averaged stress-strain curves at Pia = 
0.4 andp = 0.9. The symbols are as in figure 6. 

The fibrous networks ( L  = 2 , 4 )  fracture qualitatively in the same fashion at all values 
of p even though the force scales differ from each other. A few weak bonds break well 
before the maximum force and corresponding elongation. Later during the fracture the 
response remains very similar to an undamaged network in a quite large region; the 
length of this plastic region increases with decreasingp. The major fracture occurs rather 
rapidly compared with the ordinary Born model, but even after that the value of the 
elastic modulus does not become zero and the elongation can be increased further. 

With fibre length L = 1 the fracture is rather different. The degree of dilution has a 
strong effect. When p is close to unity, the breakdown behaviour is brittle, as is to be 
expected from earlier results [2, 121. There is, however, a clear difference between the 
ordinary Born model and the L = 1 case in the remaining strength as the elongation is 
increased after the maximum stress has been reached. This again indicates the formation 
of a short path of fracture when weaker bonds exist. 

At  lower densities a plastic region appears close to the breakdown force and cor- 
responding elongation. In this region the elastic modulus decreases from its original 
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Figure 10. Averagedstress-straincurves at P/LY = 
0.4 andp = 0.7. The symbols are as in figure 6 .  

Figure 11. Averagedstress-straincurvesatp/a = 
0.4 andp = 0.5. The symbols are as in figure 6 .  

value before the onset of fracture. The importance of this region grows asp  gets smaller 
and consequently the features of brittleness vanish. The difference between the ordinary 
Born model and the L = 1 case is still present when p = 0.7, as the very different 
behaviour shows. The stress of the more heterogeneous network increases more rapidly 
at the beginning as its average elastic modulus is larger, but the final fracture occurs well 
before that of the ordinary Born model. Finally, whenp = 0.5 the curves almost coincide 
in shape, which is to be expected as the bond elastic modulus distribution of the L = 1 
case becomes narrower. 

The effect of fibre length is clearly distinguishable in all of the examples presented. 
At p = 0.9, increasing the length does not have very large quantitative consequences; 
only the stress to strain a network for a given amount gets larger. As indicated earlier, 
the qualitative difference between the L = 2 and L = 4 cases is small at all values of p .  
Only the force scales start to differ from each other. This effect grows with smallerp and 
seems to depend on the p-to-aratio, too. In conclusion, the fibre length does not increase 
the maximum strain that the network can bear, but the stress. This is due to the 
strengthening effect of the fibres on the backbone, which keeps the network more intact 
for a given elongation. The elongation corresponding to the maximum force in the cases 
of the ordinary Born model is usually larger than that of fibrous models. This results 
from the lack of local fluctuations. 

4. Summary and discussion 

We present here a phenomenological model for the stress-strain curves of the types of 
network discussed in this paper. In the first phase, with modest elongation, no damage 
occurs and the network can be strained reversibly. In the second phase, when the 
network is strained above a threshold value, the weakest bonds in the lattice start to 
break. However, the effect due to this on the ability of the network to carry load is 
negligible. In the third phase, even stronger bonds start to break. Consequently, the 
stress saturates which results from a gradual geometrical reorganisation of the network. 

The length of the saturation phase in terms of strain depends on the microscopic 
properties of the network. Increasing disorder, i.e. lowerp, makes the saturation phase 
longer. The length of the regime depends also inversely on the fibre length. Brittle 
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behaviour in stress-strain is to be expected when the backbone of the network is rigid, 
i.e. in the fracture of uniform nearly complete networks and in that of the diluted fibrous 
networks. 

Finally there follows the phase of major fracture, in which large regions become only 
singly connected to  the backbone of the network and are thus unable to carry load. The 
stress decreases rapidly which is partially due to the missing rotational invariance of the 
Born Hamiltonian. Rotating groups of bonds without increasing the energy stored in 
internal deformation can cause the breakdown of the bonds connecting them to the main 
body of the backbone, which reduces the elastic modulus of the network greatly. In the 
final region, the weak links connecting the network are broken. 

To conclude, the results indicate competition between path-forming and screening 
and possibly also non-local breakdown. The first phenomenon is due to fluctuations in 
individual bond strengths and the latter to microscale correlations from fibres of non- 
unity length. Even a minor change in the bond length is able to affect the breakdown 
characteristics of random networks in a profound way. The character of the breakdown 
problem resulting from the Born Hamiltonian gives a clearly better description of real 
materials than the usual RRN and c ~ m o d e l s  do. 
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